THE USE OF AN ELECTRONIC ANALOG CONPUTER
IN THE DETERMINATION CF THE NORNAL MODES
OF LATERAL VIBRATION OF NON-UNIFORM BEANS

Thesis
E57

Library
U. S. Naval Postgraduate School

Annapolis, Md.


```
\[
\begin{aligned}
& \text { i. } \\
& \text { N:. . } \frac{1}{4}+\cdots n^{1}
\end{aligned}
\]
\[
\begin{aligned}
& 3.2 . \mathrm{Mi} \text { 12. }
\end{aligned}
\]
```


MABLE OF COTSENS

2TST OT FTCUREG
SUMTARE
INTRODUCTTO 1.2.
 30.32
HTGUSCTOR AND ERSUTTS $3-1.0$
Part une (Preilmanarop Probican) 13-24
Part givo (APA By Probiam\} $2 \lg +20$
COHCuUSTONS $20-24$
REFRRMGES $1+3$
CATOULATIONS $44-45$
TABLES ImTII
अackes $1-24$

8. D.O. unul:ition ghogoin,

 Ime. 7en.
 Fax Beat.
 Ta Brom.
 3) 320 。

 i)
 (1)

 "rominued Emita in \quad.

SUMTH2

 Guts ond mask consides ism the IErenea an acenting

 the tur dily accossibis.

1ha: conmoncrics of th ellomornic byey yand

Recults obtaned sonntiowinz wendny derzontise a, 1\% are in blose agreanme with rosules oitaticat - 8 braphioal methods and wat [un samputar. Resulus Gbevingi considertag aidition-i offoces of shat
 We to the assumptons man in cotine wo tho ecmperer equaciono

This investigation rase emucted in tic Noboretorfes of the Aeronautionl Engincoring Denc.riment ,

$$
\begin{aligned}
& \text { 10. }
\end{aligned}
$$

INTRODNTORYH

 tione che to mamiztuun of hane hamgetrmitatos

 Aurporution for the surnt ' Doveces Center on the

The bechniques aploy hat hatn ate basoa on
 desigmed ameer the cientit gimen in Rof. ? by
 a octuonic computers comdonct it the 7njucrefisy on
 1-5pertiontious has wot vab Kem bemptunted. Whi onour

 moioct.

 setulse of thas ability of murat hao gycudidpue ni noithatebic and cavichlas ofn on mave vol the the

 af wibrekion of bean: for ruric a 2radime and mot

 Sidering benling derleblom orive The aren, Is
 of: Anemita and rass dictuthonone were cymecrt cel Bom its midide secoion.

 hasticd jegen: Navy.

Ash Invesilgution of the norn: I modes of vibraw
 1as been conducted by tho Natjensthy of Mantang

 chone were ojuaned fou the diest and second aomal

 Brofacse Rechines Compa wibu, soluthons of the finto LSte numal nodes constiowns :andiac denlections only,

 minde olectomic anguo xom, hata.

Ls stated in the int stmoth. the ra": a ments necessamy for atitin up e complenc romproce
 leboretory equipment. A acmera maseriptitas of the
 mororeace is at prescat: thom momished, Ifof dea 3mintions of the varion, bompadentis besel agh ghtom (206 315s:

The mity upon whicin the form is blad is e.
 24चing good ztability, blgh ghand an exfeutsve
 bisna the amplifies is ueed as ar ritiple ow ditijou Bign changer, and intogratotn. It hate the surlister purform any of these operations in Ab recesmay onity to make extemal changes of bla incelancers in tho Impit and readback chreutibs. Ithe ? shown tic

 is counted. Pig. 3 and Ifia. it ace plotagrequen of
 respocively. Due to she 1 io deceres phase ihtos in the amplifier it changes the lien of the lumite raltm age in efery operation. Tow puro sign changting the

Anput and feedback Impedences consist or equan resistors; for multiplication tha desired ratios of feedback to input resistors an e plugged Into the anplifier circuit.

The amplifiers are comected to a porer supply distribution panel by meant of sinwire sitieldcd cables. The two knobs shom on tis chasuls of the ampliffer are used to balanco the amplitien fom ze:o direct current output prisor to usy in the conpreer circuit. The knows are comecte to tro variable raststars assoctated with the iny thine.

To balance a muluiplying of fign changiag amplifier, the input is shorted to gremand ayual rachstor" (one megohn) are pluged into the input and Seodback circuits. By use of a multi-rang: direct curcent Facum tube voltmeter comectod bureen ground and the output, zero output is obtaix i by adjusting the two knobs.

Tho procedure $\mathcal{L o s}$ balancirb he whegrading amplifier is shimilay. Mitin a ouc mogonturestabor and a che mocrofaxad capaction as tmput and foozbace
 the mobs for a constont ontput.

The procedure for betancing andmatinas of dmpliniers in a computes seb-wp wil difor sommat denendire on the probles os ombs attion. "ana
 poxciculamy through intatrichnomplifferss Stow daccoptable oves-all unicinaces o the colphter. A nrocedure for balancing e eas both conpute efocuitu
 deting with the vibrations of a hipsa mula.

The jacks seen is the ahozelt of the auditrices are decignea for bonana riugh ani. spenow ins foubenz I adio Trpe 27h-li dorbic ynug. Ithut are ferthadis

 Tho high voliage pourl bupples requinsl ito the

 axpoly for the amplifice becbots, aro trake: to a Hestribuctor bor by noaur of staman dablas. Tho

 zatur owtenes, and a solat coutan yaret.

 whath biviri, one pulso pam scuam is sent tractiy in thino solay concrol gano? ion the purmose of betrice the the compter prosizme elways on the same atas of

 the cent flats ons the tituine of the problen.
 Fige Ge Dach zelay bonsista of tree exes of haty contretu each. Two of whentoen ates hew buideme

 ditions while one of the iomeri is user to on in the semies conmected reststore on the tuguixi pret. What thes equapnenc it is themera e possibio of stumlete a variable function, of it beam for thotance, An Eomey Jiations along the brom. The number of stations uscl togethor with the maber of rolay omtacke Thpou per sezond detemmse tho length on the woblen want in sems of seconts. To obs in a coman sotrelem

 shon\} the lengin.

Is stepoing relay courool pamo? cimai that inch

 Giken dureetly ruon Ref. ${ }^{3}$

Polay G, through nowno11- aloent comtont: hassea phases Erom relay F to tre uoin of steppinc te\}an A.
 thergined and no longer nasses futhes. Stu thes selag then stops. Melays and an peryosm the teen Fmetiones For stopprag relays 3 ank 0

Mrese three relay3 of 1 and o also 0", 3 ,
Anoomant pert in imposing the intival contat nta\%. When ank thmee of these wayn ar onorghach frimes

 natcely imposing ond zoncuing te thition conditions. The inttial condutions ase imsosel as soon ve ain thatec

Hasen weley fir is eloget, the initial-coudtrion solats are energized, themeby wemoumg tho sutitat concitions. Nelay it ts comerolien by normm tlymaram contects on relay ho If zeley it is momentwrizy onew.

 farraly chosed contacts an 20 ? ay Io fle lome ae

 "elemerockes contect 1 .

ReIby 0 is the etramime voley o comtad al by thin

 contact 40 is left, relays F, G and in oosn Rid pul.u. are continued to be supulied to tha stepping salays. Simmltaneouely selay id drops out, onspming en the "lockirg concacts of relay \%is the incuave any one on the stopping relays reaches contast 2. wolat. closes and remalns closen. Thens modiately werres the intital condittone and fasnex ieses the arouthe reqay 0 。

In case any one ar mone or the buce whote 2elaym are not usec the actreapar tin suthoknt "an
 oporation of relay ī。

 with raviable coeflelents. Flg, of \& a kateme

 given in the followigg dismavion ot the hat onch problens.

reelininary to the nasmery oblect of the 3 investigation, there is growented ghe solutho-a to tuo simple beam protzara ae detaminoc ly the

 Bechmique to be useci sna to develop a Caciltty in

 ExC?

Pset

The first prelfmimaty parbien mas sho lowantro
 af a Pow 2montally supporaor? tema of oonetan; pwor!

 +ixa cianmed and himger.
 of surit à bean is giton ab 9

$$
\begin{equation*}
E I \frac{d^{4} y}{d x^{4}}=w(x) . \tag{013}
\end{equation*}
$$

 beama．
 any point x ． $x=$ digtence 1 en ，the bebt mon： $2=$ ？Prot one end．
If＝Youmges indilus of EIectichoz．
$I=$ area momons of imentia of a mocas scction on the benm tith resuch to

honding moment ons man fonse at dmy intis In
－Zont the bean are
3）wheng rnnem：$M(x)=\left[-\frac{d^{2} 4}{d x^{2}}\right.$ 3゙ロ 3nッ：

$$
Q(x)=\left[-1 \frac{d^{3} 4}{d x^{3}}\right.
$$

4393
Bearn Clamped it 30 n Whas

Dene Comaivicns：Zero slope and zuzo deflention ab each mens matese boumdex．ecmetheng are exprosench a．s
$y(0) \therefore-y^{\prime \prime}(0)=y(z)=y^{\prime}(y)=0$

Muscotinal Botucion: 9

$$
\begin{aligned}
& y(x)=\frac{W(x)}{12 E I}\left(\frac{x^{2}}{2} x^{2}-\operatorname{mas}^{3}+\frac{z^{2}}{2}\right) \\
& y(m a x)=\frac{W(x))^{4}}{384} \quad E I
\end{aligned}
$$

The of wher equation is aet ur by larin a 3hence of the indevondent ratriably in the at fimet squrbion (1). The indeperionc variable is is changed to \% time in 3econds, and the lagen of ala forginel buan is expoosed at to stal chapest tim fri smiteo faten in seende.

Cute corputer aquation is then

$$
\begin{equation*}
E I \frac{d^{4} y}{d t^{4}}=\frac{I^{4}}{T^{4}} W(x) \tag{2}
\end{equation*}
$$

The compacer circuit fow the solution o whs aforion is wiven in Fig. 10 , The end comitcingo

 pionesas -Va and Vb to be applict aro at fixth wamwn.

 woltage to ha to simulate mio matuom iontans riz) 0) the beams and wes minesteret int tome of hatctor

 $=-y^{\prime}$ and yo

A comrezt solution fre jetahned tn tire folitring dunnser: thith a constant inuti voitace 7 on whth
 -7. set at an arbitrary valmeq all initian onminione fore imposed by closing une Authial condtita peraj
 Gie inftiol conditton melayes simuleanemu? y 4 mns -eleasing elue end contituars. Seremel urinlo mone nade nith different settines oi the potenter at ot
 ard coneitiuns were watisftal and recordad on the ons11?ogrepin Pig. II shome tho woutuon ut tho yocblen as "evorded. Mhe Ioncth of the soluthons s, un the oselilograph is $m=3.6$ gasotuls. if $=\cdots 3$

$$
\begin{aligned}
& Y(\max) \text { cheoretroai }-\frac{2159}{384}=0.5050 \\
& \text { Y(max) from Fig. } 12 \quad=0.590 .
\end{aligned}
$$

Inge If Bean Hinged aì 3.th Euds

Fnd Sonditions: Zero dolicecion and zeto bewasm momert at each cond. These bormden onndehems are erpzessed as $y(0)=y^{15}(0)=y(2)=y^{24}(1)=0$.
Theoretical solucion:

$$
y(\text { max })=5 \quad 18(E) a^{4} \quad @:=2 / 5
$$

The compucer equation 29 the same as won Towe Zo
 ino to the ehange in and amititims. The aunder. Newn, fow the colution ow bhe soblam in wers is Its. 22. The end conditions y $(0)=y^{9}(0)=0$ wher oiteined by shomblue the foenback napacitore of. 1_{2} and A_{4}. Shear fures and alope hare casumito values at the ends of the beain ant ave thandotad by baticery voltages - Va and Wb respencively soplled to
 tonned as before for Tyce I. Soveral triald amain
 to ontair the proper end endicions.

Fife 13 shows the solution of the pool ar as reconded on the ascillograph, whe lorgtin an the boon I? On whe oscillomarh is men sured at $7=208$ maeneds. $V:=1.3$.

$$
\begin{aligned}
& \text { Finas) theorecical }=\frac{5.59 .3}{3.4}=1.30 \\
& =1.15
\end{aligned}
$$

The second preliminory problin was the deves ainotion of the firgt throse nemal noties of latemat vibution of a unifom freceree bear conslier irs the effects of bending coiloction ony. The itratheg been is considered loaded by inemta forean dua to Bes on mess and accelemetion.

The dieferemial echation or notion wt the

$$
\operatorname{Ex} \frac{d^{2} x\{x, b\}}{d x^{2}}=\mu \frac{\left.\partial^{2}-x, b\right\}}{\partial t^{2}}
$$

Whers $\mu=\frac{4 \delta^{8}}{8}$, the mas3 distributan along the bean $\gamma_{=}=$the density of the matertal of the beam.

$$
\begin{aligned}
& A=\text { the cross yattion I ar an of the beon. } \\
& \beta=\text { the accelerocion dus to gramton. }
\end{aligned}
$$

$$
\begin{aligned}
& y=v e r t i c a l \text { deflection of the bsem } 2 t \mathrm{~s} \\
& x=\text { distance alonct the beam neasurod Prom } \\
& \text { one end. }
\end{aligned}
$$

It is assumed that $y(x, t)=X(x) 0^{0, n}$.
There $\pi(x)$ is a function orivy of x and is ful purnent 0stimo, $e^{\text {jwt }}$ represents ainusoidel oscillett.urs of Trernency ω.
Thon

$$
\left.\frac{\partial^{2}}{\partial t^{2}}(x, y)=\cdots(x) 10\right)^{2} e^{j u s t}
$$

and equation (3) becomes

$$
\begin{aligned}
& E I d^{4} X \\
& d x^{4} \\
& 0: \mu \omega^{2} X=0 \\
& \mu \omega^{2} \frac{d^{4} X}{d x^{4}}-X=0
\end{aligned}
$$

The computer equation is sec up as botore by wating a change of the independent veriable in the oxiginal equation (4). The indeocndent velisilo, x, Is changed to t, time in seconds, and the ?enct of the beem is axpressed as ? total slapsed froe or molution in seconds.

$$
\text { Then } x=\frac{I}{T} t \text { and } \frac{d^{m}()}{d x^{n}}=\frac{I^{n}}{T^{n}} \frac{d^{n}(x)}{d t^{n}}
$$

The computer equation becomes

$$
\begin{equation*}
\frac{E X}{\mu()^{2} I^{4}} \frac{d^{4} X}{d t^{4}} \cdots X=0 \tag{5}
\end{equation*}
$$

Fox simplicity we let

$$
\alpha_{m}^{2}=\frac{\mu \omega_{m}^{2} I_{2}^{2}}{T I}
$$

250°

$$
\omega_{n}=\alpha_{n} \sqrt{\frac{E T}{L_{H}}}
$$

the nature?
frequency of vibration for the nth mode. In
arittion, for the computer eavetion (5) we fertote
C $=\frac{3}{\alpha^{2}}$
To that the computer equation reduces to

$$
\begin{equation*}
C \frac{d^{2} d}{d t^{4}}-X=0 \tag{6}
\end{equation*}
$$

Pos the empluter solution, the C was given a value of unity (i megolin) and the problem was solved by finding a length. T, on the oscillograph solution for o white the simulated and conditions as determined by thine bean supports were mat 。

The completer at wit rus the solubion of oquation (6) is fiven in Pig. $2 h$, Mhe eme conditions to be
 monont ani shear foreo at ee sh ont are zero. Whese boundary :onditions ano expressed as

Th surisity thase and conditions on the computer,
 stontod. Is there is s. definite but untmom slope and deflestion at baoh end of the bean, these are sinuleted en the computess by batroxy voltages at tre a. : The remectively impielis applied to of apock cotroinz ani Aleo Λ s betorm, Th sias finted at abomb
 sol.tions antil the end conditions of ne:o shen to Tos ie anc jending monent were sathried

The , utputs of A_{1} and A_{2} Nowe comeret bixough an:- frieng to the two chamnels or the Burn secomder Bo rectaing oscillographs of XP? and -TM?。
arsect lutions shoming the fulfllmens of the axd condition! recuired vero obtaired when the minfmua or maxis 11 of X^{18} "doponding uron the mubler of the
 was rase th measuring the lencths Ty of the soluthon. This cur" was used in proverence to XX' because the
 of the sulution.

Cosrect solutions wi the secueney ion ine fixm Ghee normel modes of ribsation of the bent wene ohm Hained in a maner simitaz to that prevata*y dern cribet. To was mate constont amz TVa wha fritionly set at an aroutramy vaine. ill intital on condtusoms vere imposed by closing the inftinl condition wolay sultohes. The probien mas staxted by stautemeously rolonsing all the and condtitions. Severel fxial settings of the powentioncter controlline tin roltage wTa wore nocentary befome al commet soluthom for cach mode was obvoinei.

Solutions of the fingt modb mere quato peacily cotenned, but for the socund and thent rudes trice setm asing of the potentiometur contran iting th wott ge wTe
 Listaibility of the arrationers used anc ontruions ins praver supply voltage mene encug" to caman unpuble in popewtion of soturions. Tany miala nane hecoevaxy to obtain a fer corvect soluthora. Eig, Ih ghove the correct solution cosilhograzta atuatre for tho finst throe modes. Trs texulus oftained irm cior was
 Ampends on Den Hanter ${ }^{30}$
Ricde Des ravtog Gerertez.

a_{2}	1	22.4	22.4
a_{2}	2	61.7	22.73
a_{3}	3	121.0	121.3

 -ntont as practica=9! poratislo.

 (7) 2ranuorti checis.

 and 4 , and be kept in kefnaee by fronurt thote.
5. A11 procaution chans be teren tut the

 ghorid be earefuling reme?nted. pan lag chenot onn be effectively retuced br increesing the unin irn outprib rolitage recorcied an the contlomand
 roitage - Fo hac thres segmeer of tincers at ocntrol When tres found quite repesesty for solnting of whe n'rher nodes. Va for thu noord wedo vee thent th br rezy cione to the ∇_{2} in the thtod zoce.

It was felt that the accureng of the Thenkes

 in scemaraers.

Pary

For the purpose of this strdy, the whating

 of thrs flooting beam has been caxivet ${ }^{117}$ surlu inns the effects of bending and shear dorlection, rotany Insuria, extermal loaing, daraping force, and buoyancy
couce The problea lase consthered is si z zolution af the differental squathon for the ventier 1 motion of the elactic cusve of the vilutuag anto consicertan itrst bending deflection only and secou fouls s

The complete deferemeiai onvetion of the elesta omme is given by

$$
\begin{equation*}
\left[4 \partial^{2} x(x t)\right]=0 \tag{7}
\end{equation*}
$$

Where cach term bes a phyotar intapectotron.
The ifirst temm

$$
\left[E I_{A} \frac{\partial^{2} x(x, t)}{\partial x^{2}}=3_{\mu} \frac{\partial^{2} t(x,)}{\partial t^{2}}\right]
$$

Er the sum of the momextio due to elantion dernextion iz. bendine and rotary inemta. The cisolendotal operator $\frac{\partial^{2}}{\partial x^{2}}$ redeces this to an equifomat instam butrad Ioad.

© 3 translatory ineruia.
Considering itrest the eflezt of brallitg defllocuton only, the differental equation zeduses :0
$\cdots \frac{\partial^{2}}{\partial x^{2}}\left[E I_{A} \frac{\partial^{2} y(x, t)}{\partial x^{2}}\right]+\mu \frac{\partial^{2} y(x, t)}{\partial x^{2}}=0$
wincre $\mu=$ the mass clistribution along the boen and Includes the withual wass when 4 an equivaient mess added to that of the shat to rempescm tho incutia effort of the water acceleratec when tho shapis vibrarion.

 bean and is independext of tino. ejut represemts simnscidal cscinations of frequency ω.
Then

$$
\frac{\partial^{2} y(x, t)}{\partial x^{2}}=-\omega^{2} e^{j \omega \pi} \pi(x)
$$

and essumitug that if is a constant and that x and $/ \mu$ ane functions onif of x alons the beas, aquation
(8) becones

$$
\begin{equation*}
\frac{d^{2}}{d x^{2}}\left[\pi x \cdot \frac{d^{2} x}{d x^{2}}\right]-\mu \omega^{2} x=0 \tag{9}
\end{equation*}
$$

ife let $I=I_{0} I(x)$ and $\mu=\mu_{0} \beta(x)$ wase μ_{0} and
Cho exe mamimur values of moment of incriba end mase respective jy.

To sot up the computer equation, a change in the independent variable is again necessazy. Whera x was the independent vartable, lot it the in seconds

$$
t=\frac{7}{2}=
$$

where is the length of the ship notually. It the Iengith ot the shio on the sompiter soluthon. There $0 \leq \pi \leq Z$ before, now $0 \leqslant t \leqslant T$ for the compurer.

In genaral.

$$
\frac{d^{m}()}{d x^{n}}=\frac{I^{n}}{T^{n}}=\frac{d^{n}()}{d t^{n}}
$$

and oruetion (9) becomes

$$
\frac{m^{2}}{I^{4}} \frac{a^{2}}{2 e^{2}}\left(E I \frac{d^{2} x}{d \hbar^{2}}\right)-\mu w^{2}=0
$$

Cubstituting for I mal it: If a concterio suc
dividifug shrough by ω^{2}, and μ_{0} o wre have

(13:
$\operatorname{Toting} \alpha_{n}^{2}=\frac{\mu_{0} \omega_{n}^{2} j_{1}^{2}}{B_{0}^{T}} \quad$ and $0=\frac{-\frac{1}{2}}{\alpha_{n}^{2}}$
the notural frequenoy of wibration of tion th uode
9.3

$$
\omega_{n}=\alpha_{n} \sqrt{\frac{a_{0}}{u_{3} I^{4}}}
$$

The conputer ogatiton bectaes

$$
\begin{equation*}
C \frac{d^{2}}{d c^{2}}\left[i(t) \frac{d^{2} X^{\top}}{d t^{2}}\right] \sim B(\varepsilon) R=0 \tag{1.2}
\end{equation*}
$$

In this computer anotion, the berdisu

As the ship nots as a treeviroe bent, who
and heandaxy conditiors on the probitom any ant Che bending romemt and Eliser ane zoro at zur sand The boundary condivions ate ampeste as $1(0) \frac{d^{2} t}{d \epsilon^{2}}=\frac{d}{d \varepsilon}\left[1(0) \frac{d^{2} X}{d b^{2}}\right]=1(T) \frac{d^{2} x}{d u^{2}} m \frac{d}{d}\left[\mathcal{L}(T) \frac{d^{2} x}{d t^{2}}\right]=0$

The computer clrcutt for the solution of equetion (12) is giten in fig. 16 . The end conditicas an weme
 by instually shorting tre feodbeck caputh 45 of 19
 cenk und us the hean are mhanm, these as stmoleted us. the computer hy battemy voltares - Ta wh rib mapoducly

 Wherent txial solutions fow the ravion sudem micha the ond gondirions of sero shzar" and benifing inoremt, Ware satsoricd.

On Thole I ls cabulated the ongima dase on the APA 87 s the ship for which frequency of theation wes dosired. This shtp has the foliowne gomeral charactaristic,

$$
\begin{aligned}
& \mathrm{B}=\text { Tolder breadish }=5 \mathrm{si} \\
& D=\text { Mroleded depth } \quad 37^{3} \\
& d=\text { TuIl load drofto } \quad=25^{3} 6 \pi
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{sons} \frac{\operatorname{sen}^{2}}{16^{2}}
\end{aligned}
$$

Tor the purposes of calculation, the zhit was difuder into 20 paxts of 20 foot 3 enctos each. For Qach section there is cobulated the moveris of inortia ant mass. Fig. 17 shons the distributior wo mase and

 resi emenc is at in sobsuly crputaloa (12).

As the stepping relay restator pancl, Fig. G, Thas cxiginally planned, the length of solution on the computor should have beon $\mathrm{I}=1.0$ seconds. flavever. E.s the stepping relays usca stopped the problea immentately upon reaching stop 40 , the Imen of the solutlan, T $=9.75$ seconds. This condition eould heve ban ourrected by rewirtag the stepping relars? control relay efrent to orovido for a quarter sesont pause on step 40 beiore the fultial condition relays agatn Amposed the end condition and stopped the roblen. The ambhors of fris paper din not feel at Iftiomy bo change the equipmenc in this maner, and felt thats tho guarter second lost could be acsountel for tis tha solution knowing that, was actually 9.75 seconde. Eren though the quazer second in the lerjth of the comprere solution meant ten feet in the las ctot of the ship, this "lost" section of the bou does rot matertally Effect the vibratory characterisitzes of the vessel.

Fg. ? Shown schematically the armangment of the comprer and conplece newrork of controles and pown cumply. Fig. \& is a photrgreph of the coaylute potivork. The outputs of A_{2} and A_{3} are shom connectod therorghamplifers to the two chamels of the Bremb pocosder for recording oscillographs of and

$$
\omega i(t) \frac{d^{2} x}{d t^{2}}
$$

$$
\frac{a}{d t}\left[1, \frac{a^{2} x}{d x^{2}}\right]
$$

 is ofteria.

> Thecrebical soluthon es bus ppoptenses of
 t- Joms tizi by graphical mothate ant by a caloujator

Trequaney on Shaction an Momen notes
Burbie cmey

n.20)	Cornputes		IE:
	0	N20/5ce	2cos
I	6.0	-2, 4	23.32
3	0.98	20, 53	28,
\therefore	0.25	69.6	

 M.covion cffect just diavusod:

Wuation (7) ras कho complete disfommbta? gquation of the ciastic cumbe in mion the tum

$$
=I_{\mu} \frac{\partial^{2} y(x, i)}{\partial t^{2}}
$$

 chacie cofomation in mery buetcin. That, bema wae 2runces by the dimfercutimh operatro $\frac{\partial}{\partial u}$

160 dm oguivalont disteficuch load. I μ ts the mase noment of hertla of a erys section area nos rais lenght of the beain.

$$
\text { In oquation (7) is also inciuded the enma }-\frac{3 x_{0}}{\pi / 6}
$$

Hheh is also recured by the operator $\frac{\partial 2}{\partial 16}$ to as

 ofeco of cacar derlection is the torm
 wo the computer equation.

Pergrouping the terma of squation (7)s the rollerv= lng fourth oxder dix̂erential equation is doranot Which connders the effect of bending derletion and an approximation to the offocts of shear detlection ent rotary inervia:

Fhere It is area monem of Snortia of a mosm aection - 23a.

In addition to the ascumption that $y(5, b)=$ $X(z) e^{j u t}$, it is assumed that owes the lometa of the

 arme ithe constant ab to then

$$
B=\left(\begin{array}{lll}
\operatorname{Ban} & \cdots \frac{2}{3}
\end{array}\right)
$$

 thic in ta cud incopenderit of Gime, ne hanc

$$
\begin{equation*}
\frac{d^{3}}{d x^{2}}\left[E 2 \frac{d^{2} x}{d x^{2}}+I \mu\left[\omega^{2}\right]-\mu \omega^{2} N=0 .\right. \tag{14}
\end{equation*}
$$

I. 3 mas done for bunileg lowlonton naiz 3 3t

$\operatorname{coth} \cos _{0} a_{n}=\omega_{n} \sqrt{\frac{4 a^{24}}{E T}}$ $\mathrm{C}=0 \frac{\mathrm{~m}^{4}}{\mathbb{w}_{4}^{2}}$
$\therefore 01=\frac{J_{0} B T^{2}}{I^{2}}$, equation (25) beceses
$\frac{d^{2}}{d e^{2}}\left[t(t) \frac{d^{2} Z}{d t^{2}}\right]+\pi \frac{d^{2}}{d t^{2}}[i(t) \theta(t)] \div a r(t) d=0$
The natural frequency of the vibuction in he $2^{\text {ith }}$ node is

$$
\omega_{n}=\varepsilon_{n} \sqrt{\frac{E T_{0}}{\mu_{0} I_{4}}}
$$

In order to obvicite the ssenctaity of ieteting my
a now computar elreuit to introduce the prodnot tomm of. Eho two variables, ift and $\beta(\mathrm{t})$, it was felt a gooit - perovimetion could be attajucd by selccitas from the duba awallable a representative areroge welne of qile jarohuct teran $[f(t) \beta(t)]$ manch vould be agshed conSuant ower the length of the beer. This whe cione asd ryith the rogrouping of constants in the soacud tern of ocuation (16) to a single constent. D.

$$
D=N[i(\theta) \beta(t)]
$$

and tho computer aquation beconoo $\left.d \frac{d^{2}[(t)}{d t^{2}[t} \frac{d^{2} x}{d t^{2}}\right] \div D \frac{d^{2} x}{d t^{2}}-0(t i x=0$.
 bemding moment and shear are acro eto both ew.? In the jrevious problems discussed, those vore proverctional. to the second and third derivetives of tho deflection arspoctivoly. Then in addition to bending dollections

$$
\begin{aligned}
& I=E I\left(\frac{2^{2} y}{2 x^{2}}+\frac{\mu \omega^{2}}{\pi x} y\right)
\end{aligned}
$$

aoweras: in setting tup the ecnputer ernetica

conid bo neclected for a good appersimetior of the
 essumption, the bendiag monemit is propombonen so L $(b) \frac{d^{2} x}{i^{2}}$ and the ahear is proportional io
$\frac{1}{20}\left[2(b) \frac{a^{2}}{a^{2}}\right]$ in the computen ozuection (7)
The bmanary conditione fow the romaton of the comomen oquation are then expressed as
$i(0) \frac{d^{2}}{d v^{2}}=\frac{d}{d t}\left[x(0) \frac{d^{2} x}{2 t^{2}}\right]=\frac{1(T) \frac{2}{2}^{2}}{2 t^{2}}=\frac{d}{d i}\left[1(1) \frac{d^{2} x}{d t^{2}}\right]=0$
The ernputer circuit for the colution of
onvetion (17) is given in ris. 16 , where the dottec: Nine with iesistance C/D from the output of h, to the freut of h is included to accomplish the $\frac{e^{2} X}{0^{2}}$ tem 2n the computer equation. the procedre for the som
 Cus dus solution of equation (12) thene batuins dow ilaobjate only rere consficerat. In adution to weyphog O_{y} it is now necessary bo reary the ritio T/10. AB D semains constant foz all moder, he matic I/D could have been introduced amo tho orinuters circult lastead of C/D and $5 / 0$ tould nota heon the
 rocersary from trial to hatal for enclu move.

The owefllogxaphs of wolutions contrer for the
 Erclugrre。

If Was found that the additicn of tho G/D fromt ratinance to A_{2} from A_{4}, Eave con-Ulemble wabilsi: To the computer circuito in the range of rest stanee usce. The alternative of ustig a consomit 2 , patio as montinned above as on input, reststance tras not e's succssarul in atabiliging the circuit and go wan neca.

Theoretical solutions of the frozuenoy of nomal modes of ribration of the ¿PA ôt have boes lebenthen 3y a calculator designed by TBM for band 2 g and shome efflestion and rocary inerbia effects. sompartive resulus ame listed belon.

Frequency os Jibsption womal Times

-1010		Compues.	I2゙?
	6	raci/sce.	rad/see
1	7.00	12.39	10.30
2	3.685	23.02	19.55
$?$	0.725	35.00	30.02
4	0.470	46.60	39.208

The froguencies obtained by voams of ibo
 only ame considored ame antrosumatoly ?ite to dmbu

 fhould be nde for betser rommacr of zesmats. inne Prenvoncor vicrotion has an atiect both 03 the monsume Wout on ant on the tecorder tape and on the batamee
 af soluziors.

Arotinut sourec of ember in the compuner efsectiam Whe eccuracy of the results Ites in hive sevpary rrlaye
 hevo accurete reststanees an cach stex foz bhe simi-

many pluscin connections of resintors tu beates on the restisor panels introduced inaccuracies in the actral remlstance obtained rar each wop. Thon boo. it is known that the beidging contacts of the stopnine relays atd not always perectuy bridge from one sep fo the next.
-s is felt shat the results were wol withzu the accuracy of the computex netwont itgens end that corections mate to the oscillogwanh zecnuct es rentioned above mould mprove the procisici of the railues of frequencies of tiuration oberned.

The "esuits obtatned when, in adctichon to bending cefoction effect, an approminatzom to the exiects on whear defiection and rotary inerivin ros consirexed, are progrossively inigher, from about ten yoroent sor tiae rixst mode to abous elydteen pereonib for tho Souriti

It is apperont that ohese dortathonemisin incerane with the higher modes resul nrom sonezathe moxe then the inaccumedes try the computer notwout Tre ausmotons nade to appanmate the entects or Shoen deflecuion and rounay inemtia in bewidxe ur
 Pox whe sucreasing orroz. These ascurptions ware ngeessany to avoid complicathag the prosent computer network to a degres out of proporiton to the actual ofiect of shear and sotsmy frextia on the frequencies
of wibiation of the ship.
rith a computen constructed of mone 3: ectue arid stable components, the nrocuct Ears [i(t) ; (t)] boule be introducad as a vitable. A metrov: could Te seb up to solve a compuicr equailon mhi in ineludes

The prest ston of the values wh frequencios gobulner? Srom Juot an analog conbuter netront shoula de zowinttoing better than in the present imminnes.

GONCTHSTOHS

Solutions to many anzineoring problems ai arectical interest involving higher order difa fronelal equations with wariable coepfotuts mat he obtained by means of a relatively atuple and inexpensfve electrone aniog computer. Soluthons so obtained ane weil within the scouracy nobersary ior most enginoorine purposos.

The aocurocy of solutions ontained arro Itmeter by the precision of the computsin eun ponemes used and regulation of the assjolatith porew suppiies. The asswnotions meide in wiuctns as examt differential equstion to a nonpuren egration

as the gyparetrs used. Eow wrocigen of cuponomis.

 sauniluj of the conporcner fnosocsa.
 - 8 ghan enatson into the convertern with ithe consew
 \Rightarrow : Dnctunt average effest oi the resvanie yn de

 Xat unctant arerage axech of clecso donocrior.

 thaxe wonly uncoubtendy have Deen cioose: anovonent It rosults obtaliod. In tive latece cas:, the average

 She compurex.

Esonony of time ant peroonne.. is the woblary beronit os such an amalag of muter as deonaibes in

 the colutior of higher oxdor anferential ermetsones
 Cr horme rox a single oprathor.

Tho amalog computon is ospectally anminbia \&o
 anpets of yarying dosign pananetors may bo monthoiot? Fith 1 titno effort by gimple extarnal chatbor to a simele computer netruonit.

 19:2.
2. H. W. Boda, moturork Analy3is and Feabacir Amm plifler Desigut, D. Tan houtrond Co., Inc., Men For?s. N. Y. $=1945$.
3. E. I. Ginbton, MDC Ampitifur Tochrioues, MEloco tronics, pp. 98゙-102, 11arch, 194\%.
 "Amolrsia of Problems in Mymanes-by Zlentronse

5. Soymens Frost, Pempact hnalog Commersip Electonses, ToI. 21. pp. 216-122, viT3. 1945.
6. C. T. Fowe, E. Hove, D. if. Fagolberger, "Inves-

 (unpublished at psosent).

 Cotomirad for the Darde T. Tarlomilolel Dastin. Cast Cerock, "taryland.
2. 'Nupobenko and G. if: TasGuIlough: "Inanenco ox
 Yozk, IT.T., June, 1937.
to. J. P. Den Horrop, miechanioul Thbrabions".
 2947.
 "Theoretical Rescarch on the Dymamics of a. Ship:t structure", Second Progress Repori, Project Irs70m, Contract 150 ri-il6, Engine ering lesearch insterute:

12. J. Omondroyd, G. F. Hesc, R. I. Fess: J. L. Himan, Theoretical. Rescarch or the Dytumics of \vdots Sluipts Structure? Third Progress Report, Prozent 110670 m Contrect isfori-116, Tngineeming Researela hast tuts Universticy of IIChigan, Am hrbor, Theho, itaroi, 1549.

 Bonding only

Gonstants usod:
$T=9.75$ see. $\mathrm{m}^{2}=95.0525 \mathrm{sec}^{2}$
$\sqrt{\frac{10}{\mu_{0} I^{4}}}=\sqrt{\frac{I .93 \times 10^{6} \times 2628}{2.008 \times 256 \times 10^{8}}}=0.314$

Ist Rode

$$
\begin{aligned}
& c=5.0 \\
& \alpha_{1}=\frac{T^{2}}{\sqrt{C}}=\frac{95.0625}{\sqrt{6.0}}=33.85 \\
& \omega_{1}=\alpha_{1} \sqrt{\frac{E I_{0}}{\mu_{0} I_{1}^{4}}}=38.85 \pi 0.32_{4} \mathrm{red} . / \mathrm{sec} . \\
& \omega_{1}=12_{0} 4 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

2nd Fode

$$
\begin{aligned}
& C=0.98 \\
& \alpha_{2}=\frac{m^{2}}{\sqrt{0}}=\frac{95.0625}{\sqrt{0.98}}=95.1 \\
& \omega_{2}=\alpha_{2} \sqrt{\frac{E T}{\mu L_{0} T^{4}}}=95.1 \times 0.314 \mathrm{red} / \mathrm{soc} . \\
& \omega_{2}=29.5 \text { red. } / \mathrm{sec} .
\end{aligned}
$$

3rea jode

$$
\begin{aligned}
& 0=0.25 \\
& \alpha_{3}=\frac{m^{2}}{\sqrt{C}}=\frac{95.0525}{\sqrt[3]{0.25}}=190.125 \\
& \omega_{3}=\alpha_{3} \sqrt{\frac{E I_{0}}{\mu_{0} L^{L}}}=190.125 \times 0.314 \mathrm{rad} . / \mathrm{sec} . \\
& \omega_{3}=60.6 \mathrm{rad} .1 \mathrm{sec} .
\end{aligned}
$$

Gougtonts 3Bed:
$T=0.75000 \quad T^{2}=95.0525900 .2$
$\frac{I_{0}}{40 I^{2}}=0.0086$

Eron Tulo III $B=2.304$ Ifet ${ }^{2} ;[i(c) B(c)]=0.55$

$$
\begin{aligned}
& \because=\frac{T 0^{2} 5^{2}}{2^{2}}=\frac{2628+1,304+95.05 \% 5}{160,000} \\
& I=2.035 \sec 0^{2} \\
& T=1[i(t) B(t)]=2.032 \% 33 \\
& \Sigma=308 \% \operatorname{soc}^{2}
\end{aligned}
$$

? se icde

$$
\begin{aligned}
& \sigma_{1}=\frac{9.0}{0}=\frac{9040}{7}=12,1 \\
& \omega_{1}^{2}=\alpha_{1}^{2} \frac{E I_{0}}{\mu_{0} L^{3}}=1291 \times 0.0936=127.5 \\
& \omega_{1}=11.29 \text { rad.fsoc. }
\end{aligned}
$$

ani 2oge

$$
\begin{aligned}
& 0=1.685 \\
& u_{2}^{2}=\frac{T^{2}}{0}=\frac{9010}{1.685}=5300 \\
& \omega_{2}=\frac{a_{2}^{2}}{4 I_{0} 5_{0}^{4}}=5360=0.0936=5 j 0 \\
& \omega_{2} \approx 23.02 \text { rad./sec. }
\end{aligned}
$$

3.1 Rodes

$$
\begin{aligned}
& 0=0.725 \\
& 0_{3}^{2}=\frac{1^{14}}{0}=\frac{9240}{0.725}=12,440 \\
& \omega_{3}^{2}=12 \times 70=0.0956=123 \ldots \\
& \omega_{3}=35.0 \times 212 / 800
\end{aligned}
$$

Ath Aloc

$$
\begin{aligned}
& C=0.35 \\
& c_{a}^{2}=\frac{T^{2}}{C}=\frac{9 \pi 10}{0.42}=22.050 \\
& \omega_{4}^{2}=\omega_{4}^{3} \frac{E T .0}{u_{0}^{2}}=22050 \pi 0.090^{2}=2175 \\
& (i)_{4}=4,6.5 \text { rad. } / \mathrm{sec} .
\end{aligned}
$$

 $I=4.00 \mathrm{f}$

Section Stern To Bos	I ft. ${ }^{4}$	$A \in \frac{2 \sec ^{2}}{t^{2}}$	K	$A^{*} \underbrace{2}$.	
0-1	617	0.1775	0.30	5.35	1.270
2-2	1157	0.6277 ?	0.271	7.3 .5	3.48\%
2-3	1.586	0.5025	0.220	2.30	1.5\%
3-4	1895	2.1300	0.172	12.209	1.6529
2, 4,5	2146	1.2946	0.151	14.03	1..6622
5-5	2334.	1.3548	10, 24)	13. 75	1. 579
$5-7$	22.5i	1.4568	0.3.5	13.61	1.637
r ratis	2538	1.9493	0.101	73.82	1.8715
$8-9$	2555	3.9540	0.14	3.4.4.4	1.737
9-10	2509	2.0060	0.321	14.93	1.655
10-17	2623	1.9401	0.137	1.4 .65	12.543
11-12	2628	1.9159	0.134	14.09	1.54 .2
32.13	2623	1.6765	0.24 .1	15.97	1.736
13-14.	2614	2.424.2	0.152	15.4.9	2.325
14-15	25.39	1.2439	0.768	12.59	1.682
1.5-1.6	24.93	1.0189	0.186	12.50	2.792
160.1.7	2281	0.71178	0.205	31.00	1.0136
17.1.8	1936	0.4188	0.225	10.14.	2.459
18.18	14.7	0.254%	0.245	P\% 89	1.309
3.920	738	0.2693	0.25 6	54.4	1289

TABEL IJ A.PA S Si
f(b) and $\beta(t)$ in N.gohms as Iniroduced into Conpution
$I_{0}=26,8 \mathrm{it}$
$A A_{0}=20060$ tons sec. $3 / 20.0^{2}$

$$
\begin{aligned}
I & =I_{0} 1(门) \\
\text { AB } & =\text { An (B) }
\end{aligned}
$$

$B-\left(\frac{E}{K G}+\frac{1}{N}\right), \eta=\frac{I_{0} R T^{2}}{I^{2}}, D=H[I(0), \beta!t]$

STEPPING RELAY CONTROL CIRCUIT

$$
4
$$

$$
-
$$

$$
15-
$$

$$
1
$$

$$
1
$$

-

$$
1
$$

-

i Syn ph an i

$$
-\cdots,-\cdots,-\cdots
$$

$$
1-\cdots-\cdots=\cdots, \quad \cdot
$$

$\square \square \square$
E-

$$
2
$$

sing

$$
\therefore y_{0}-0 y=1 . .
$$

$$
\begin{aligned}
& \begin{array}{r}
2 \\
\hdashline \\
\hdashline \square \\
\hdashline
\end{array}
\end{aligned}
$$

ETg $\operatorname{lag}_{2}-\operatorname{man}$

Figure 13
Oscillograph Solution of Deflection of Hinged End Beam.

$$
\begin{equation*}
x \tag{0}
\end{equation*}
$$

$$
x
$$

$$
0
$$

$$
F R
$$

Figure 15
Oscillograph Solutions of First Three Normal Modes,
Uniform Free-free Beam.

FHuse 17 D atembiton of VRTUALMAS:

Figure 18
Oscillograph Solution of First Normal Mode
APA 87. Bending Deflections Only.

(tit) (t)

